高性能热塑性树脂基复合材料以其突出的综合性能得到广泛关注,已经应用于航空航天、石油化工、生物制药、交通运输等领域。与传统热固性树脂基复合材料相比,高性能热塑性树脂基复合材料具有以下优势:可以实现熔融焊接,焊接点的力学性能高;优良的损伤容限,恶劣环境的适应性强;成型过程可逆,发现缺陷可以在线修复;吸湿性低,降低设计余量;室温下无限期贮存,无需冷藏设备,降低贮存成本;优良的耐温性能,如聚醚醚酮树脂(PEEK)长期耐热温度为250 ℃;可回收利用,是绿色环保材料。热塑性树脂基复合材料成型除了可以采用传统的成型方法外,还可以采用先进的原位成型法。图1是原位成型过程原理图:热塑性预浸带经过导向系统,到达铺放头,热源将预浸带中的热塑性树脂加热熔融,压力辊对其加压铺放,冷却定型。整个过程通过控制单元实现闭环控制,控制单元能够实现热源热量和角度的调节,采用热成像仪对切点温度进行实时反馈。原位成型方法的特点决定了其具有热压罐等传统成型方法无法比拟的优点:首先,原位成型法解决了超大、超厚制件尺寸受热压罐尺寸限制的问题;其次,原位成型法是一种在线成型方式,无后处理过程,缩短产品流转过程,生产周期短、效率高、成本低。
原位成型技术制备的热塑性复合材料性能只能达到传统热压罐成型技术的80%。分析认为,消除20%差距的关键在于:突破原位成型的两项关键技术,即:铺放级预浸料制备技术和加热铺放头的设计制造技术,从材料和工艺两方面消除或降低影响热塑性复合材料性能的不利因素。本文主要介绍国内外原位成型工艺及其两项关键技术的研究进展,根据原位成型工艺应用于航天领域的典型型号,提出原位成型工艺两项关键技术的指标,并对原位成型工艺未来的发展进行展望。
铺放级预浸带方面,预浸带包括两端在内的厚度波动<6%;预浸带宽度波动范围在-0.1~0 mm;预浸带的孔隙率≤1%。以上三项指标的控制与最终复合材料构件孔隙率的控制有关。预浸带厚度的变化使得加压辊施力不均,从而造成最终复合材料构件中层间存在孔隙,预浸带宽度变化也会造成层间孔隙的形成,而预浸带中的孔隙(图10)最终以复合材料构件中的层间孔隙即分层缺陷形式存在。
来源:复材应用技术
此文由中国复合材料工业协会搜集整理编译,文章不用于商业目的,仅供行业人士交流,引用请注明出处。
下一篇:复合材料成型用常见脱模剂